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A data-driven approach to rapidly estimate
recovery potential to go beyond building damage
after disasters
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Following a disaster, crucial decisions about recovery resources often prioritize immediate

damage, partly due to a lack of detailed information on who will struggle to recover in the

long term. Here, we develop a data-driven approach to provide rapid estimates of non-

recovery, or areas with the potential to fall behind during recovery, by relating surveyed data

on recovery progress with data that would be readily available in most countries. We

demonstrate this approach for one dimension of recovery—housing reconstruction—ana-

lyzing data collected five years after the 2015 Nepal earthquake to identify a range of ongoing

social and environmental vulnerabilities related to non-recovery in Nepal. If such information

were available in 2015, it would have exposed regional differences in recovery potential due

to these vulnerabilities. More generally, moving beyond damage data by estimating non-

recovery focuses attention on those most vulnerable sooner after a disaster to better support

holistic and nuanced decisions.
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Natural hazards often cause disproportionate impacts on
vulnerable populations and amplify inequality for years
after an event. Among many examples, four times more

women than men died in the 2004 Indian Ocean Tsunami1, and
multi-family, Hispanic, and linguistically-isolated households had
inadequate access to loss-based assistance programs following the
1994 Northridge Earthquake2. When repeated examples of
disaster-exacerbated inequality are evident over time, we must
recognize that recovery policies, and the underlying information
that supports them, fail to address and prevent deepening
inequality.

Housing recovery policies are a powerful tool to prioritize
vulnerable populations after an event3,4. Early decisions can shape
the long-term recovery trajectory of an entire region, both posi-
tively and negatively. Currently, recovery assistance is not
designed as a means of redistribution2. For example, aid is based
on losses (or damage) incurred to pre-disaster homes, therefore
prioritizing those who had assets before the disaster2,5. Alter-
native needs-based, area-targeting, or subsidiary approaches exist,
where policies prioritize groups who may lack necessary resources
to support their own recovery2,4,6. However, the implementation
of sustainable recovery approaches is challenging7, partly due to a
lack of timely information that prioritizes these communities and
identifies factors that will impede their recovery in the weeks
following a disaster when these plans are made8,9. While it is clear
that marginalized populations fall behind in recovery, few
quantitative data exists in the hours to days after a disaster that
explicitly acknowledges these inequities to better support more
equitable and sustainable recovery approaches. For example, even
though the the Post-Disaster Needs Assessment (PDNA) was
developed as a process to collaboratively rapidly evaluate human
recovery needs to support government recovery efforts10,11,
quantification of disaster impacts still largely focuses on eco-
nomically quantifiable damages rather than social needs6,11.

Advances in technology and increased data availability provide
an opportunity to develop information on populations whose
recovery may be impeded by factors other than damage to their
home. Non-traditional post-disaster data, from remote-sensing or
digital crowdsourcing, overwhelmingly focus on quantifying
building damage12,13, because it is relatively easy to quantify14

and supports top-down recovery agendas6,15. While damage does
represent a reduction in housing quality, the sole focus on
immediate impact (Fig. 1a) is a myopic measure of long-term
recovery needs (Fig. 1b). To identify communities with dis-
proportionate needs long after a disaster, we propose focusing on

those who fall behind in recovery over time, or non-recovery. We
focus on non-recovery since it places attention on those who do
not recover rather than delineating the characteristics of suc-
cessful recovery. Importantly, to be able to regionally estimate
non-recovery after future disasters, we develop a data-driven
approach that uses census, remotely-sensed, and modeled data
that would be readily available in the hours to days afterwards
and represent a range of sociodemographic, economic, environ-
mental, and geographic factors that are likely to affect recovery.
Recognizing that recovery occurs along multiple dimensions16–21,
here we demonstrate the concept of non-recovery for the housing
sector, an important dimension for recovery17,22,23—and overall
health24—in which inequalities are amplified25. Here, we develop
one specific metric of non-recovery using empirical reconstruc-
tion data from the 2015 Nepal earthquake, which is the prob-
ability that a household living in a severely damaged house will
only partly rebuild or not rebuild at all within five years (Fig. 1c).
We use a large-scale survey conducted in 2019 in the earthquake-
affected districts by The Asia Foundation and local partner Inter-
Disciplinary Analysts to assess long-term impacts and recovery
patterns26. The developed approach combines surveyed recon-
struction outcomes with the census, remotely-sensed, and mod-
eled factors to rapidly estimate the regions that are least likely to
recover by evaluating which factors are most related to surveyed
recovery outcomes, which we validate with a held-out dataset and
verify with Nepal-specific and broader literature on vulnerability
and recovery.

Our study shifts attention beyond estimating building damage
as the main source of information after an earthquake by intro-
ducing an approach to rapidly identify the obstacles that lead to
the lack of household recovery progress. In Nepal, we found that
the most important predictors of incomplete reconstruction fall
into three categories: hazard exposure, rural accessibility and
poverty, and reconstruction complexity. The relationships
between these predictors and non-recovery are complex and
disparate between households, though general patterns emerge
amongst groups of affected households. Notably, the spatial
pattern of non-recovery brings to focus regions that were not
highlighted by damage alone. The approach for estimating non-
recovery provides a needed alternative over prevailing methods to
capture social vulnerability or resilience that have been histori-
cally developed for pre-disaster mitigation planning in developed
countries. The specific model developed for Nepal can directly
guide future risk reduction planning in this region. For post-
disaster planning in general, evaluating and quantifying

Fig. 1 Non-recovery focuses on those who are unlikely to recover in the long-term. Rapidly available post-disaster data often focuses on quantifying
building damage, which captures immediate impact (a), as opposed to long-term recovery needs (b). Non-recovery identifies the impacted households
who are not able to fully recover over time, as shown by the dark red recovery outcomes in (c). In the Nepal case study, we demonstrate non-recovery for
the housing sector based on the five responses on reconstruction progress shown in (c), where the sizes of the rectangles represent relative proportions of
each response among the survey sample (n= 3376). General concepts are shown, with specific metrics of impact and recovery used in this study included
in parentheses.
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non-recovery can expand our data that represents disasters
beyond damaged buildings and support decisions that target areas
that will struggle during recovery due to, largely, pre-existing
vulnerabilities.

Approach for estimating non-recovery
The approach to rapidly estimate non-recovery after a disaster
captures likely inequalities in long-term recovery progress due to
a range of sociodemographic, economic, environmental, and
geographic factors. This approach consists of relating surveyed
non-recovery outcomes to predictor variables reflecting these
factors from remotely-sensed, modeled, and census-based data
that would be readily available when a future earthquake occurs
(Fig. 2a). We demonstrate this approach considering the case of
the 2015 Nepal earthquake, which is emblematic of a major
modern disaster with substantial data produced from sensors,
field surveys, and digital crowdsourcing27.

Among multiple non-recovery outcomes for the Nepal earth-
quake, we focus on one metric–reconstruction progress four and
a half years after the event–due to the emphasis on owner-driven
reconstruction in this timeframe by the Government of Nepal
(GoN), international agencies, and NGO’s. After Nepal’s National
Planning Commission led their Post-Disaster Needs Assessment
(PDNA) in the first three months after the earthquake, they
estimated a total of 350,540 million NPR (~$3.3 billion USD in
2015) in damages and losses to the housing sector28. The PDNA
categorized districts by the severity of their damage as shown in
Fig. 2b, largely driven by the housing sector, which comprised
half of overall losses. Afterward, the Government of Nepal
implemented the Earthquake Housing Reconstruction Program
in affected districts, which delivered reconstruction grants to
repair or rebuild severely damaged or collapsed homes29. This
program was designed to be carried out over a five-year period
with a specific focus on rural households outside of Kathmandu
Valley29,30. Due to data availability and the focus on rural
households in Nepal’s Reconstruction Program, we center our
study on those affected districts outside of Kathmandu Valley
(Fig. 2b). While these districts are mostly rural, each district
consists of several municipalities are relatively less dense than

urban Kathmandu but more dense than many other areas within
the district (see Methods).

Here, reconstruction progress is measured by whether a
household fully completed reconstruction four and a half years
after the April 2015 earthquake (Fig. 1c). The majority of rural
households in the study region owned their homes, so recon-
struction progress, in this case, is informative of household
recovery. To ensure that the developed model is measuring
reconstruction ability rather than differences in initial damage, we
consider only households with damaged or collapsed homes
(n= 3376). Controlling for damage, we focus on the impacted
households that have still not completed reconstruction in the
recovery policy’s timeframe despite being targeted for support.
We refer to the lack of reconstruction progress as non-
reconstruction when discussing Nepal’s model and recovery
outcome, recognizing that the overarching approach for esti-
mating non-recovery should be applied to alternative measures of
recovery outcomes in the future (see Discussion).

Initial predictor variables of non-reconstruction were selected
through a combination of exploratory interviews with Nepali
community leaders and recovery stakeholders; studies on impacts
and recovery from the Nepal earthquake; and broader theories on
sustainable development, vulnerability, and resilience (see
Methods). To support generalizability of this approach beyond
Nepal, we only considered variables that could be represented
with commonly available data or easily developed in other
countries. Due to this constraint, some variables that have been
found to be important for recovery in Nepal through purely
survey-based or ethnographic studies could not be fully repre-
sented. However, the resulting initial suite of 32 predictor vari-
ables capture a range of human, social, natural, economic, and
physical dimensions that are expected to influence non-
reconstruction and are included in Table 1. We then reduced
this initial set of variables to improve model parsimony using an
automatic selection technique to remove variables less predictive
than random noise (see Methods). A few variables were further
removed to increase model interpretability.

By relating recovery outcomes to predictor variables, we take
an empirical and data-driven approach to identify the factors that

Fig. 2 Non-recovery estimation approach and study area in Nepal. a The model for non-recovery is calibrated on surveyed recovery outcomes, and uses
readily available predictor variables representing sociodemographic, environmental, and geographic factors likely to influence recovery. Outputs include a
spatial estimate of non-recovery, the relative influence of each variable on non-recovery, and a metric of performance by validating the model on a test set
(See Methods for more information). b The study area considered here are the 11 most affected districts outside of Kathmandu Valley affected by the 2015
Nepal earthquake. The areas in blue were originally classified as severely hit (higher impact) and green as crisis hit (lower impact) by the Government of
Nepal28. Map data ⓒ2022 Google.
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best predict a household’s likelihood (or lack thereof) to recon-
struct. This empirical approach provides a needed alternative to
prevailing index-based methods of estimating vulnerability or
resilience31,32, which were originally designed for pre-disaster
mitigation planning in developed countries but can end up being
misused or poorly adapted to post-disaster contexts in developing
countries. Instead of beginning exclusively with census data that
may not be readily available or vulnerability theories that may not
be applicable in the affected location, we use a combination of
openly-available geospatial data with local recovery surveys. We
develop a data-driven model that uses the surveyed data to weight
open geospatial data that represent a range of sociodemographic,
economic, environmental, and geographic factors, similar to
models to estimate various development indicators like mortality
or literacy in the Global South33,34. Here, we apply a random
forest model to predict the probability of non-reconstruction,
which is an interpretable method that is able to capture nonlinear
influences and interactions between variables, does not require
distributional assumptions of predictor variables, and performed
better than traditional modeling methods we also tested (see
Methods). The result is a set of concrete factors that affect a
household’s lack of recovery and a predictive map of a tangible
outcome, non-reconstruction, as opposed to a metric that pro-
vides relative values of vulnerability or resilience.

Results
Our analysis reveals that eight predictors explain the probability
of a household with a destroyed home to be unable to complete
reconstruction 4 and a half years after the 2015 Nepal earthquake
(Table 1). We categorise these predictors into three main cate-
gories: (1) hazard exposure, (2) rural accessibility and poverty,
and (3) reconstruction complexity. These categories linked with
impeded reconstruction are consistent with some of those defined
in other short- and long-term recovery studies in Nepal8,9,35–38

and broader frameworks of vulnerability39,40. The range of pre-
dictors indicates that impeded reconstruction relates to a collec-
tion of socioeconomic, environmental, and geographic factors.
This finding supports the perspective that housing recovery is a
nonlinear and multifaceted process that depends both on pre-
existing social vulnerabilities25,38,41 and practical constraints3.
While this is well-documented in natural hazards research, it is
not clearly acknowledged or accounted for in rapidly available
post-disaster information systems.

Influence of predictors on non-reconstruction. Figure 3 shows
the marginal effect of each variable, indicating its relative influence
on predicted non-reconstruction. These Individual Conditional
Expectation plots allow us to see the average relationship between
each variable and impeded reconstruction found in the trained
model. Each variable generally has a trend where greater values

lead to higher probabilities of non-reconstruction. However, these
relationships are not purely monotonic and vary from household
to household. This variation demonstrates the diverse and com-
plex reality of recovery experienced by affected households.
Because random forest models capture interactions between
variables, these relationships represent the influence of one vari-
able given the inclusion of all the other variables in the model.

Hazard exposure. Hazard exposure includes variables relating to
the intensity of the main earthquake or other ongoing or his-
torical hazards that may compound the effects of the earthquake.
Since Earthquake Shaking Intensity and Landslide Hazard
emerged as important predictors of non-reconstruction, our
model confirms hazard exposure influences reconstruction. Here,
our analysis shows that areas that experienced the most intense
shaking from the mainshock (at a Modified Mercalli Intensity of
8.5) are predicted to have an average of nearly 40% greater
probability of impeded reconstruction independent of the level of
damage to the home. Note that we have already controlled for
initial damage by considering only damaged houses, so this
metric likely quantifies damage to the surrounding community
infrastructure, land with associated reduced access to roads, and
disruption to livelihoods. Similarly, Landslide Hazard is asso-
ciated with up to 20% greater predicted probability of non-
reconstruction.

While we expected areas with higher mainshock Earthquake
Shaking Intensity to be less likely to reconstruct due to immediate
impacts to surrounding infrastructure, the inclusion of
Landslide Hazard reflects the importance of compounding or
more frequently occurring hazards on recovery capacity. The
mainshock triggered nearly 20,000 identified landslides in
Nepal42, which already faced ongoing landslide risk due to
monsoons and urban development43,44. Since the earthquake,
many rural and remote households faced additional landslides
during monsoon season45. The relationship we found demon-
strates confirms perceived landslide risk by households38 and how
secondary risks like landslides compound pre-existing vulner-
abilities of exposed Nepali communities, putting them at greater
risk to immediate damage, leading to long-term displacement,
and hindering regaining of livelihood36,46.

Rural accessibility and poverty. Several affected communities in
the study area were in rural, geographically isolated, or moun-
tainous regions26. The inclusion of Remoteness, Tree Cover, and
Food Poverty Prevalence reflect the particular challenges that
impede reconstruction for more isolated communities. Remote-
ness captures the travel time to, and therefore ability to access,
municipal headquarters, which host local markets, services, and
government offices47,48. The analysis predicts that the most
remote households were nearly 20% less likely to reconstruct.

Table 1 Predictors of non-reconstruction in Nepal.

Variable Unit Category

Earthquake Shaking Intensity Modified Mercalli Intensity Hazard exposure
Tree Cover % Rural accessibility and poverty
Population Density people km−2 Reconstruction complexity
Remoteness hours Rural accessibility and poverty
Rainfall-Triggered Landslide Hazard index (unitless) Hazard exposure
Tap Water % Reconstruction complexity
Topographic Slope ∘ Reconstruction complexity
Food Poverty Prevalence % Rural accessibility and poverty

The final eight predictors fall into three main categories, as indicated in the third column.Variables are ordered from most to least important as identified through the variable selection process.
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Other studies have found that remoteness complicated the eco-
nomics of household reconstruction: remote households struggled
to attract or afford wage labor in highly competitive post-disaster
labor markets; construction materials were much costlier to
transport where vehicles could not reach37,38,49,50; and the len-
ders, non-profits, and governmental actors supporting recon-
struction tended to neglect difficult-to-reach populations51. The
challenge in reconstruction for remote communities further
compounds previous inequities in immediate damage from the
earthquake8,9. The relationship found from Tree Cover and non-
reconstruction adds complexity to the positive relationship
between remoteness and non-reconstruction. Here, we find once
an area reaches a certain level of Tree cover (> 40%), households
were more likely to reconstruct. This result mirrors findings on
short-term recovery along multiple dimensions in Nepal,
including physical reconstruction, that natural capital serves as a
resource in areas where there is low accessibility, since commu-
nities can rely on local materials to rebuild35. By providing evi-
dence of a relationship between reconstruction ability and Tree
Cover, a proxy for natural capital, this result supplements the
current gaps in our understanding of the benefits of natural
capital for disaster risk reduction, which has largely focused on
other hazards, risk, and short-term recovery35,52,53, rather than
long-term reconstruction. The underlying mechanisms for this
relationship require further research, but it is likely the model
underestimates one benefit of tree cover on reducing landslide
risk through slope stabilization53, as it is directly captured in the
Rainfall-triggered landslide hazard variable.

Additionally, areas with greater prevalence of pre-existing food
poverty were less likely to reconstruct. The importance of food

security–which is a component of human capital or human skills,
knowledge, and health54–has been evaluated for shorter term
income recovery in rural Nepal55. This relationship provides
further evidence that human capital is important for other
dimensions of recovery, here, longer term household reconstruc-
tion. Rural, mountain communities, who are often already
experiencing economic and food insecurity9, will face additional
challenges during reconstruction. Overall, the negative impact of
food poverty on reconstruction found here reflects the inter-
twined relationship between food security, building damage, and
reconstruction45,56, and highlights the complex risk arbitration
these households will need to make in balancing food security and
safe shelter after the earthquake.

Reconstruction complexity. The significance of population
density, percentage of houses with tap water, and topographic
slope likely reflect the logistical complexity of reconstructing. In
the case of population density, our model predicts that house-
holds in denser areas are less likely to reconstruct. Urban areas in
Nepal had unique challenges with reconstruction, such as shared
landownership51 and strict rebuilding requirements for settle-
ments in heritage sites57, resulting in slower reconstruction
progress26. Our model captures the differential ability to recon-
struct between urban and rural areas in terms of a continuous
gradient of population density, and further reflects this urban/
rural difference in reconstruction, both in Nepal and globally3.
While some factors affecting reconstruction, like land ownership,
have been found to be more pronounced in more urban areas51,
the results of the non-reconstruction model in Nepal point to the

Fig. 3 The diverse, relative influence of each predictor on the probability of non-reconstruction. Each plot shows the values of each of the eight final
predictors (x-axis) and the resulting probability of non-reconstruction from the analysis in Nepal (y-axis). Each point is a household used to develop the
model of non-reconstruction. The thin lines running through these points show how the predicted probability of non-reconstruction would change for that
household when varying the value of the predictor on the x-axis from least to greatest, while keeping the other characteristics of the household fixed. The
dark line shows the average relationship among all households. All results are scaled to the predicted probability of the minimum value of each predictor,
therefore relative probabilities are shown. The right-most 1% of data was truncated for tree cover and tap water for sample representation.
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need for more detailed comparisons on the reasons behind slo-
wed reconstruction between dense urban areas, like Kathmandu
Valley, and peri-urban municipalities, like those in the districts
included in these studies. The inclusion of the percentage of
households with tap water per ward exhibits a similar relationship
—greater prevalence of tap water in a region is associated with
higher probability of non-reconstruction. Here, the percentage of
households with access to tap water per ward was initially chosen
as a proxy for quality of life and infrastructure access35,36, those
who have tap water spend less time obtaining clean drinking
water. While greater access to tap water could reflect infra-
structure access, a factor that can be viewed as promoting resi-
lience, the relationship here indicates that access to tap water is
instead related to slowed reconstruction, considering all other
variables. This perhaps indicates that, at the household level,
reconstruction can be slowed in areas with greater access to
infrastructure (often in more population dense, connected vil-
lages) due to the more complex logistics of reconstructing these
houses, which often require external laborers or have permitting
requirements51,58. This result illuminates how this model can
capture unexpected relationships between variables and non-
recovery, though the reasons behind these interactions require
further research.

Topographic slope shows an influence on non-reconstruction
beyond its link to hazard and accessibility. It can be explained by
the difficulty of finding rebuilding sites and reconstructing on
steep slopes or increased costs associated with retaining walls
necessary in hillside communities38,59, though studies have also
found that marginalized populations in Nepal have settled on
steep slopes as well8,38.

Spatial distribution of non-reconstruction given damage. The
model can be used to map the projections of non-reconstruction.
Figure 4a shows the probability of a household with a damaged
house having not reconstructed within four and a half years. It
can be used in addition to the map of building damage in Fig. 4b
(from an auxiliary eligibility survey by the Government of Nepal).
Comparing these maps shows that areas that would have been

predicted to face the greatest and most persistent recovery needs
are not necessarily those that were most damaged from the 2015
Nepal earthquake. The building damage caused by the earthquake
was lowest in the southwest Hill districts of our study area and
increased moving north towards the Mountain Districts near the
Himalayas, closer to the epicenter and adjacent districts (Fig. 4b).
This pattern of damage is largely dictated by the high shaking
intensity and prevalence of vulnerable construction types in the
mountains. In contrast, Fig. 4a shows that non-reconstruction is
predicted to be likely scattered throughout the center, west, east,
and south of the study region. This shows a pattern of non-
reconstruction dictated by the spatial pattern of the social, geo-
graphic, and environmental predictors included (Supplementary
Fig. 5). The map is shown in high-resolution to show the reso-
lution used to develop the model, but should be aggregated
depended on the scale required by users. Overall, the resulting
map of non-reconstruction points to areas that were not origin-
ally estimated as the most impacted in influential documents like
the PDNA (Fig. 2b), but that would require support during their
recovery due to both physical and non-physical characteristics.

Discussion
To shift the focus from damaged buildings to vulnerable com-
munities, we propose emphasizing and quantifying non-recovery,
which focuses on those households who will not recover years
after an event and due to obstacles to long-term recovery. The
proposed approach employs data that is readily available after an
earthquake representing a range of factors influencing recovery to
identify communities likely to be unable to recover. The variables
that predict non-reconstruction in Nepal fall in the categories
of hazard exposure, rural accessibility and poverty, and recon-
struction complexity. Some variables and their relationships with
non-reconstruction could generalize to other countries outside
of Nepal, like earthquake shaking intensity. Whereas other vari-
ables, importantly, are characteristics of some of the most
vulnerable communities in Nepal, like remoteness and food
poverty prevalence8,60. The empirical approach for estimating
non-reconstruction can therefore inherently capture both

Fig. 4 The regions predicted least likely to recover were not necessarily those most damaged from the 2015 Nepal earthquake. a The spatial
distribution of non-reconstruction using data from the 2015 earthquake shows areas likely to have impeded reconstruction scattered throughout the center,
west, east, and south of the study area. Dark red areas correspond to high probabilities of non-reconstruction, or top of the y-axis in Fig. 3. b The pattern of
damage was largely concentrated in the north, near the Himalayas. Damage data is from the Central Bureau of Statistics Nepal117. Dark blue areas
correspond to areas of high damage. Both maps only show locations with buildings and are colored by quantiles of the distribution. Map data ⓒ2022
Google.
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broadly-applicable and context-specific, in this case Nepal-spe-
cific, factors of vulnerability in technical information that can be
used as a basis to guide recovery planning and policies soon after
a disaster occurs.

Having information on ongoing social and environmental
vulnerability and risks after a disaster, in addition to building
damage, is necessary to better inform recovery policy. Developing
rapid data on non-recovery emphasizes a broad range of potential
factors to consider during recovery, offering a useful supplement
to the myriad of building damage data produced after a
disaster12,13,15,61 and one solution towards providing the neces-
sary high-resolution and rich data required during response and
early recovery8,9. For example, ongoing risks from landslides and
food insecurity were identified as important concerns before the
2015 earthquake44, but were largely not considered in Nepal’s
post-earthquake housing recovery program, partly because the
least resilient households were physically disconnected, exposed
to higher hazards, and were the least visible in post-earthquake
datasets8. Because the model of non-recovery explicitly incorpo-
rates factors on ongoing risks, the resulting estimate of non-
recovery emphasizes that these risks are indeed associated with
recovery capacity, and should therefore be incorporated into
post-earthquake planning. While this specific model of non-
recovery would not have been available after the 2015 event, the
model’s results could have informed the eligibility survey for the
household reconstruction grant, which inadequately addressed
landslide risks14,21. Consequently, Nepal’s recovery policy pri-
marily focused on in-situ reconstruction using more earthquake-
resistant housing designs irrespective of whether that household
experienced chronic landslide hazards. In addition, much of
the nongovernmental organization (NGO) activity supporting
reconstruction inundated high damage areas, or near the epi-
center in Gorkha62, though work was also required in areas with
chronic social vulnerability that received less media attention8,63.
Rapid non-recovery information would have helped to mitigate
spatial inequalities caused by the prioritization of recovery
efforts37, by highlighting the importance of considering both
areas that experienced high damage and were unlikely to recover,
with their respective underlying factors. While the examples listed
here demonstrate how a variety of post-disaster data would be
useful for earthquakes in Nepal, multifaceted post-disaster data is
also needed, and have been desired15, for other hazards in other
regions.

Methodologically, we chose to model non-recovery because,
after an earthquake, many organizations understand the most
vulnerable to be those groups who have trouble reconstructing49.
Compared to index-based methods for mapping vulnerability or
resilience, our modeling approach provides a direct measure of a
recovery outcome of interest—in this case, whether a house will
finish reconstruction—rather than a unitless aggregate of factors
of vulnerability that is challenging to validate64–66. Index-based
methods also rely on factors that are context-specific, like min-
ority population, and therefore require several place-based studies
of vulnerability that may not be readily available in most coun-
tries, limiting the implementation of indices after an earthquake
to mostly high-income countries where they have been heavily
studied and developed. Because estimating non-recovery takes a
data-driven approach, a country’s resulting model can empirically
identify those most important socioeconomic, environmental,
and geographic factors that are important within that context and
their relationship with the recovery outcome of interest. While
these identified factors could be used to develop an index, the
approach presented here instead uses these factors to directly
estimate a more actionable metric, non-recovery. Importantly,
the non-recovery model can capture the complex relationship
between those factors and the recovery outcome of interest, and

therefore maintain a level of interpretability that is often
impossible with index-based approaches66. In addition, validation
is built into the model building process, providing a sense of the
accuracy of the model, a feature that is often lacking in index-
based methods67.

The main components necessary to develop a non-recovery
model are surveyed recovery outcomes from a previous disaster in
the region to calibrate the importance of each predictor variable.
In this study, we demonstrate the concept of non-recovery with
one recovery outcome of interest, which practitioners in the
housing sector viewed as important in Nepal. Therefore, the non-
reconstruction model we develop here is relevant to reconstruc-
tion to the housing sector in Nepal, though the overall approach
of relating recovery outcomes to commonly available data can
and should be applied to alternative measures of recovery at
varying timescales and in other contexts. For example, in Nepal,
several recovery outcomes of interest have been studied at varying
time scales ranging from months to years after the earthquake,
including income and livelihood recovery55,68, reconstruction
quality69, time to reach a recovery outcome35, or as a combina-
tion of multiple outcomes21,35,37,38. Future approaches to esti-
mate non-recovery could consider these alternative recovery
outcomes at different stages of progress as well. The choice of
recovery outcome to apply would ultimately depend on the needs
of future users, but several metrics for recovery exist outside of
Nepal as well, including population displacement70, food
security56,71,population health18, perceived recovery72, and many
others23,73.

Certainly, issues can arise when overly relying on technical
disaster information15,74—hazards researchers should use
data-driven models responsibly when representing complex
processes8,75–77. The area under the Receiver Operating Char-
acteristic (ROC) curve shown in Supplementary Fig. 3a demon-
strates that the model of non-recovery provides an informative
prediction with known uncertainty. With new data becoming
increasingly available, it is expected that the uncertainty could be
further reduced in the future. Nonetheless, the model fills an
important gap in existing information that is developed rapidly
after a disaster in that it incorporates a range of factors in the
projection of long-term and multifaceted recovery needs instead
of only considering immediate physical impacts. More generally,
including a holistic and reflective set of initial variables is essential
to modeling non-recovery. There were basic factors that are
known to influence recovery that we would have liked to include
at a more granular level, such as gender and economic poverty.
Unfortunately, little openly-available data exists on many
important social characteristics of recovery, pointing to the need
for global high-resolution social, economic, and mental well-
being data. This model instead identifies large-scale spatial pat-
terns of recovery, which serves an initial step to more detailed and
diverse assessments of recovery needs on the ground.

Many agencies and nongovernmental organizations are
focusing on harnessing non-traditional data and methods to
estimate damage after a disaster78,79. There is great potential to
harness this data with data-driven methods to develop early
estimates on the likely inequalities in recovery, which are just as
important to understand when developing long-term plans. The
approach presented in this paper extends beyond current prac-
tices of estimating immediate damage to instead estimating the
obstacles to long-term recovery after an earthquake. Estimations
of non-recovery can be used to identify early after an event the
unexpected but relevant factors that are important during
recovery which should then be further evaluated on the ground.
Having quantitative data on how to support those least likely
to recover can frame recovery actions like how to invest in
recovery capacity35, how best to handle reconstruction versus
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resettlement36,80,81, or how to consider the community rather
than just reconstructing the building6. Many policymakers and
international agencies are moving towards developing data-
driven evidence to support disaster decision-making15,82. Non-
recovery is one crucial mechanism to focus our attention on
quantifying metrics that prioritize those most vulnerable and
support more nuanced recovery planning sooner after a disaster.

Methods
Study area. The April 25th Nepal earthquake caused extensive damage and loss of
life. The location of the earthquake’s epicenter meant it affected not only the major
cities in Kathmandu Valley, including the capital, but also the surrounding and
relatively more rural areas. After the earthquake, the Government of Nepal
established the Earthquake Housing Reconstruction Program (EHRP) to support
households, mostly rural and outside of Kathmandu Valley, with reconstructing
more safely29. This program provided grants of three lakh ($3000 USD) to houses
that experienced severe damage or collapsed (damage grades at or above three
using the European Macroseismic Scale, EMS-98, damage scale) based on a detailed
eligibility survey conducted in the 18 months after the earthquake. The EHRP was
an owner-driven reconstruction program, given the high rates of ownership in
these districts. Due to the government’s program focus and data availability, we
center our study on these highly impacted and relatively more rural districts
outside of Kathmandu Valley. These districts include Gorkha, Dhading, Rasuwa,
Nuwakkot, Sindhupalchowk, Dolakha, Okhaldunga, Ramechhap, Sindhuli, Kav-
repalanchowk, and Makawanpur.

Outside of earthquakes, Nepal faces frequently recurring and ongoing hazards,
where the greatest loss of life over the 20 years prior to the 2015 earthquake was
caused by landslides and flooding83. In the years after the 2015 earthquake, affected
communities faced multiple aftershocks, yearly flooding during the monsoon
months, and landslides. These ongoing risks mean that Nepal is in a constant cycle
of recovery from previous disasters46.

In addition to Nepal’s multihazard risk, the country’s geography and changing
political landscape make its recovery unique. Rural households face varying levels
of remoteness to the nearest municipality, primarily due to the Himalayas’ rugged
terrain and the inability to access roads. While the districts included in this study
are less densely populated than Kathmandu Valley, each district contains several
municipalities and rural municipalities that gained increased responsibility to
support the recovery of households throughout the district. After decades of a
monarchist government (which transitioned to a multiparty democracy in the
1990s)84,85, Nepal underwent a decentralization and devolution process in 2015-
2017 that transferred governing power from the central to local governments
located in these municipality headquarters throughout the country86. Therefore,
the importance of local governments for reconstruction increased throughout the
recovery period, especially in supporting more rural regions throughout the
district87,88.

Survey data. The field survey data used in this study were collected by The Asia
Foundation (TAF) and local partner Inter Disciplinary Analysts as part of their
Independent Impact and Recovery Monitoring (IRM) project26, funded by UKAid.
This survey was part of a series of five surveys meant to monitor longer-term
impacts, observe recovery patterns, and track the evolving needs of people affected
by the earthquake in Nepal. For a detailed analysis of the fifth round of surveys
used in this study, refer to26. Here, we only used data from their fifth round of
surveys (n= 5857), conducted between September-October 2019, or four and a half
years after the April 2015 earthquake. For this round of the survey, TAF sampled
households using a stratified random sampling technique, representative at the
district level. Eleven districts were surveyed, five of which were classified as
“Severely-Hit” in the Post-disaster Needs Assessment, three as “Crisis-Hit,” two as
“Hit with Heavy Losses,” and one “Hit,” in order of most affected to least affected.

In this study, we only considered households from the six most impacted and
rural districts classified as severely-hit and crisis-hit, which overlapped with our
study area (n= 3484) after removing all non applicable responses to the two
questions we considered below (n= 83). These districts include Ramechhap,
Gorkha, Sindhupalchowk, Nuwakot, Dhading, and Okhaldhunga. The survey
question we used as a metric of non-reconstruction asks “If your house was
damaged or completely destroyed by the earthquake, have you done any of the
following?”. Respondents designated whether they have done nothing to
reconstruct their house, have started rebuilding, or have finished rebuilding. Even
though this question is conditioned on severe damage, we further ensured this
condition by only including households that stated in a separate response that their
house was partially or fully damaged (n= 3376). Conditioning on damage
controlled for the differences in reconstruction rates between damage states and the
EHRP reconstruction grant that was geared towards only severely damaged homes.
By only including those households fit the eligibility criteria for the grant (by being
damaged) we mostly address the effect of the reconstruction grant. We controlled
for the reconstruction grant through damage statistics rather than receipt of the aid
itself, because receiving each tranche of the grant removed another subset of
vulnerable households. For example, requirements to receiving each tranche

included understanding the grant rules, having proper documentation, and bank
accounts, all of which are barriers for vulnerable households26,38. Once we
prepared the dataset, we evaluated the distribution of household demographics
aligned with those of the original sample collected by The Asia Foundation26.

We used these responses as a binary variable for our probability classification
model. Households that did not complete reconstruction by the time of the survey
were classified as one (n= 727), and all other households were classified as zero
(n= 2649). By classifying the survey data in this way, our model predicts the
probability of a household not completing reconstruction four and a half years after
an earthquake. A map of this survey data is shown in Supplementary Fig. 1.

Predictor data. We represented factors expected to influence non-reconstruction
with a set of 32 variables, which come from openly available census, remote-
sensing, or modeled datasets. The initial selection of these variables were based on a
combination of exploratory interviews with Nepali community leaders and
recovery stakeholders; studies on impacts and recovery from the Nepal earthquake;
and broader theories on sustainable development, vulnerability, and resilience. The
inclusion of a variable was constrained by whether data would be available to
represent that variable if the model is in the weeks after a future earthquake in
Nepal to predict areas of non-reconstruction. Therefore, predictor data that would
be accessible after an event was used, rather than additional questions from the
survey data, because survey data would take years to collect after an earthquake and
therefore predict spatial patterns of non-reconstruction. Many of the predictor
datasets employ the version that was most recently available for that variable after
the 2015 earthquake. For example, the modeled population density was developed
in 2015 after earthquake, but census variables were taken from the most recent
census data in 2011. Though, if these datasets are updated and measured in the
same way (for example, if a new census is carried out), those updated variables can
be used if the model is implemented in the future in Nepal.

All variables that were considered are listed in Table 1. This table includes only
those variables that had reliable and readily available data. Columns describe
specifics of the data (Units, Name, Source) as well as information on how that
variable was selected (Related Factor(s), Dimension(s)/Capital(s)). Here, we
describe the initial selection process for all variables and fully describe the predictor
datasets for those eight variables that were selected as most important for
predicting non-reconstruction through the variable selection process that is further
detailed below.

Initial selection of predictor variables. Initial selection of predictor variables to
include based on research on the recovery in Nepal in conjunction with broader
studies of vulnerability, resilience, and sustainable development. Through
exploratory interviews with ward leaders and organizations active in supporting
housing reconstruction (n= 14), we identified potential variables that broadly
influenced recovery, ranging from additional hazards (like monsoon flooding) to
economic capacity (like savings and remittances). The Government of Nepal also
instated four criteria for vulnerable populations who require additional assistance
during recovery, including single women, the elderly, children, and persons with
disabilities89. Potential variables from the interviews corroborated with and sup-
plemented variables that were broadly recognized as important for recovery in
Nepal from larger-scale studies conducted in affected districts prior to the fifth
round of survey data above35,36,63,90–94. For example, a longitudinal study on
recovery conducted in the first two years after the event similarly found that
additional environmental hazards (like flooding) led to lower likelihoods of reco-
vering pre-earthquake livelihood, while broader economic disruptions (like price
increases) led to poorer diets and reduced likelihood to reconstruct90. The com-
bination of informal interviews and a review of impact and recovery studies led to
an initial set of Nepali-specific variables that were expected to influence recon-
struction, which we completed with variables that are aggregated into broader
indexes of risk and vulnerability that have been aimed at country-level analyses95,96

or developed countries31. These related factors are highlighted in Table 1.
An important constraint on the inclusion of these initial variables in the

variable selection process was ensuring data exists to reasonably represent these
variables at a high enough spatial resolution to develop rapid estimates of non-
recovery after future disasters in Nepal. While several datasets exist to provide a
reliable representation of environmental variables at a high resolution, fewer
datasets exist for socioeconomic and demographic variables. For example,
precipitation models were chosen to represent flood hazard, of which there were
several alternative estimates with varying quality and resolutions. However, the
most reliable poverty data were from wealth indices, because higher resolution
estimates of poverty are largely based on nighttime lights data that were biased
towards Kathmandu Valley, an area outside of our study. Because of the greater
availability of data to represent environmental variables, we evaluated whether our
initial set of predictor data was relatively evenly distributed across multiple
dimensions by employing the five capitals necessary for sustainable
livelihoods54,72,97 as a guide to evaluate the range of dimensions of the variables in
Table 1. While we would have liked to represent several dimensions in more detail
that have been found to be important for reconstruction in Nepal, for example the
bridging or bonding dimensions of social capital90 or detailed remittance and
migration information68,94, more detailed measures would not be readily available
in Nepal or similar regions soon after a future earthquake would occur.
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Final predictor data. The eight variables that were selected through the variable
selection process represented several factors, as described in the results. Histograms
with descriptive statistics of these predictors are included in Supplementary Fig. 4
and maps in Supplementary Fig. 5. Shaking intensity consists of the Modified
Mercalli Intensity in the United States Geological Survey’s Shakemap developed for
the main earthquake on April 25, 201598. The seismic landslide hazard map
developed by the British Geological Survey provides an index of relative landslide
hazard triggered by extreme 24 h rainfall99. The remoteness variable estimates the
time to travel to the nearest municipality headquarters, accounting for walking and
driving time if roads are accessible, through a model developed by the World Bank
Poverty and Equity Global Practice47,48. While we only calculated remoteness to
municipalities, this variable is highly correlated to remoteness to other landmarks
(e.g., district headquarters, roads, financial institutions). Original tree cover is
derived from Landsat data and shows the per-pixel percentage estimate of tree
canopy cover in 2010100. To capture the tree cover in the surrounding vicinity of
each point in our study area, we took the average percentage within a 30-minute
walking distance. Food poverty prevalence is the proportion of individuals living in
an local government unit (LGU) who are in households that have a per capita food
expenditure that is below the food poverty line. LGUs are a sub-district adminis-
trative unit in Nepal that is a collection of multiple villages, similar to a county.
Food poverty prevalence per LGU is a small area estimation derived from a sta-
tistical model combining surveys and auxiliary data101. Population density is the
estimate of population per 100 square meters from WorldPop, which we converted
to people per square kilometer102. Slope was derived in R from the digital elevation
model developed by CGIAR103. The tap water percentage is from Nepal’s 2011
census104.

Data preparation. Each predictor variable was originally produced or aggregated to
different spatial scales (cells, wards, and LGUs), noted in Table 1. To merge with the
survey data, we extracted the value of each predictor at the coordinates of each
household location. Once merged, we split the combined dataset into six folds using
stratified random sampling to ensure each fold had roughly the same proportion of
households that are reconstructed and not reconstructed as the full dataset. We also
visually inspected whether each fold covered the same spatial distribution of the study
area as the full dataset. We used five folds (84%) as the training set to build the model
of non-reconstruction and one fold (16%) as the test set for evaluating how the model
would perform on a future dataset. For the spatial prediction of non-reconstruction
over the study region (Fig. 4a), we converted each proxy to the same resolution of
300m by 300m by resampling raster data using nearest neighbor methods to preserve
original data or converting ward and LGU data to cells through extracting the first
data value (usually of a vector of one) in a cell.

Models to predict probability of non-reconstruction. We developed a statistical
relationship between the surveyed response of non-reconstruction (Y) and the
suite of proxies (X) using the training set. Our goal was to predict the probability
that a damaged household has not completed reconstruction given its proxy values
(P(Y= 1∣X = x)). We used a random forest, which is a non-parametric statistical
model that averages the results of many individual, decorrelated decision trees105.
Here we extended the typical random forest to predict probabilities of each
household belonging to each reconstruction outcome (1= not reconstructed,
0= reconstructed)106. A bootstrapped sample of the training dataset is recursively
split into distinct subsets for growing one tree in the random forest. Each split
divides the data at that split, or parent node, into two child nodes. The parent
node is split using a proxy variable that minimizes the mean squared error over all
of a set of randomly selected features (mtry). For probability estimation, we
continued to grow the tree until we reach the minimum nodesize of 10% of the
bootstrapped sample. The probability of each node was the proportion of Y= 1’s.
This process was repeated for a designated number of trees (ntree). For our model,
we tuned hyperparameters using a grid search and minimized the mean
squared error.

Because the random forest model is non-parametric, it does not require
assumptions of the distribution of the data or specification of interaction terms.
This is attractive for predicting non-reconstruction if a sufficient amount of
training data is available because it allows for nonlinear relationships between the
predictor variables and reconstruction outcome and for unexpected interactions to
occur. We found the random forest outperformed (explained below) the standard
probability prediction model, the logistic regression, both on the training and test
sets (Supplementary Fig. 3).

Variable selection. To prevent overfitting and for practicality, we reduced the
number of variables used in the non-reconstruction model. Prior to model
development, we ensured that none of the predictor variables are highly collinear
by manually removing all but one variable with a Pearson correlation coefficient
greater than 0.75 over the entire study region. These variables tended to be a
variation of the same class of predictors (e.g., remoteness to municipality versus
remoteness to financial institutions).

During model development, we applied an automatic variable selection
technique to identify those predictor variables that are consistently predictive of

non-reconstruction in Nepal, irrespective of training data sample. For the random
forest, a simulated noise variable was inserted as an additional predictor and all the
predictor variables with a greater Gini importance107 than the noise variable were
selected. To account for variation in the variable selection due to sample location,
we repeated the model building process 1000 times using a bootstrapped sample of
the training data108. Through this automatic selection, we narrowed down the 32
original predictor variables to 12 that occurred more than 75% of the time in the
1000 models, shown in Supplementary Fig. 2, and retrained a new random forest
model using these variables.

Once we reduced the variables through this automatic selection, we then
manually inspected the partial dependence plots (described below) of the
remaining 12 variables to evaluate whether the model found influential
relationships between those variables and impeded reconstruction. We found four
of the twelve variables to have negligible relationships, as shown in Supplementary
Fig. 6. As shown in Supplementary Fig. 6, both Thatch Roof percentage and Dalit
Caste Group percentage were selected due to households in the top 1% of the
sample–too small of a sample to draw conclusions from. The differences in
percentage during the monsoon and dry season also shows a negligible average
relationship and were therefore also removed. This manual inspection stage is
necessary to ensure that final predictor variables add predictive ability to the model
and are therefore useful to collect in the future. A summary of the variables selected
and removed are shown in Table 1.

Recovery outcome–predictor variable relationships. The partial dependence
plots shown in Fig. 3 provide insight into so-called “black-box” statistical methods,
like the random forest105. The dark red line is the average marginal effect of a proxy of
interest, Xs, on the random forest function, f(X), when all other complementary
proxies,Xc, vary over the training data used to build themodel of non-reconstruction.
The resulting partial dependence function on Xs can be estimated with:

f̂ XS
ðXsÞ ¼

1
N

∑
N

i¼1
f̂ ðXS;XCiÞ; ð1Þ

where XCi are the values of the proxy variables in the training data of size N. Here, we
show these relationships for the training data, as indicated by the light red lines, which
is the partial dependence function f̂ XS

ðXsÞðiÞ disaggregated for each household and

centered to the minimum value of XðiÞ
S
109. These plots can be interpreted as the

average prediction of the model when varying a proxy of interest—it shows what is
happening inside the model. However, it does not indicate causal mechanisms in the
real world.

Validation. To evaluate the logistic regression and random forest models’ per-
formance, we calculated the area under the receiver operating characteristic
(ROC) curve110. This curve assesses the trade-off between the rate of true
positives versus false positives of our trained model of non-reconstruction when
varying the cutoff used to classify its predictions as reconstructed or not. The
closer the area under the ROC curve (AUC) is to one, the better the model is
classifying an outcome. Here, we found an average training AUC of 0.817 for the
random forest and 0.636 for the logistic regression (Supplementary Fig. 3a).
The AUC of the test set (Supplementary Fig. 3b), which indicates performance
on a hypothetical future dataset, was 0.725 for the random forest and 0.592
for the logistic regression. Thus, the random forest model’s prediction
performs better than the logistic regression and was used for our final model.
We also compared the spatial prediction of non-recovery in Fig. 4a with the
surveyed reconstruction data in Supplementary Fig. 1 and found the two to
visually align.

Model limitations. add here about these being developed for a very specific user
Several limitations of this model should be noted. The first is the interaction
between reconstruction and aid in Nepal. The model attempts to predict differ-
ences in reconstruction trends that can not be explained by building damage. All
damaged and collapsed homes were part of the EHRP’s standardized assistance
program, but we were unable to control for external, non-governmental assistance
that households may have received and were influential for several communities62.
The second is the transferability in time of the model to future earthquakes. Since
we learn from each disaster, it remains to be seen whether this specific model can
be applied to future earthquakes that may occur in Nepal, though it is likely that
many of the identified risk factors will continue to be relevant in the future.
Furthermore, predictions of non-recovery cannot capture household level differ-
ences in non-recovery due to limitations in the resolution of the predictor data.
Finally, the model in Nepal does not include several Nepali-specific sources of
vulnerability mentioned in previous vulnerability studies111,112, such as gender or
caste. This does not mean they are unimportant; rather, the final selected variables
had a more representative sample or were more predictive for completing recon-
struction in Nepal.
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Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated for the current study are available in the publicly available code
and data repository: https://doi.org/10.5281/zenodo.4560936113. The combined and
scaled predictor data that was used to develop the model of non-recovery for Nepal
presented in this manuscript is included in this repository113. Original predictor data is
openly available and can be accessed through the following sources Population data from
WorldPop102 (https://hub.worldpop.org), remoteness data from the World Bank47, forest
cover are publicly available100 (http://earthenginepartners.appspot.com/science-2013-
global-forest), digital elevation maps used to derive topographic slope available from
CGIAR 103(http://srtm.csi.cgiar.org/), shaking intensity data available from the U.S.
Geological Survey114 (https://earthquake.usgs.gov/earthquakes/eventpage/us20002926/
executive#shakemap?source=us&code=us20002926), landslide data from the British
Geological Survey99 (https://meteor-project.org/), precipitation data from CHIRPS115

(https://www.chc.ucsb.edu/data/chirps), poverty and food insecurity estimates from the
World Bank101,116, and census data from the National Planning Commission of the
Government of Nepal104 (https://nada.cbs.gov.np/index.php/catalog/54). More details of
all predictor data sources are in the Methods and listed in Supplementary Table 1. The
final generated prediction of non-recovery and selected variables are included in the code
and data repository113. Because field survey data on reconstruction progress was collected
by The Asia Foundation and contains sensitive location information, it was accessed
through a data use agreement with The Asia Foundation and cannot be shared due to
legal and ethical concerns. Field survey data can be made available upon request to The
Asia Foundation Nepal Country Office at nepal.general@asiafoundation.org.

Code availability
The code generated for the current study are available in the publicly available code and
data repository: https://doi.org/10.5281/zenodo.4560936113. Data preparation and model
building were completed in R version 3.6.1. Figures presented in this manuscript can be
recreated using these R scripts.
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